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Abstract-We consider nonlinear two-dimensional, horizontally periodic, double-diffusive fingering con- 
vection in a saturated porous medium. The Darcy equation, including Brinkman and Forchheimer terms 
to account for viscous and inertia effects, respectively, is used for the momentum equation. A mixed 
Galerkin-finite difference method (Galerkin in the horizontal direction, finite difference in the vertical 
direction) is developed to solve the initial boundary value problem. Different values of the stabilizing 
temperature gradient, characterized by a thermal Rayleigh number RT, ranging between 1 and 50 are 
considered. The stability boundaries which separate regions of different type of convective motion are 
identified in terms of RT and Rs, the solute Rayleigh number. For RT = 1, for instance, the steady convective 
flow which bifurcates from the motionless conduction solution at RA = 4n* + 1 persists in the face of small 
disturbances up to at least R, = 10Ri. At approximately Ri = 440, a transition to time-periodic convection 
occurs. For a larger stabilizing temperature gradient (RT = 50), the steady-convective motion is stable with 
respect to small disturbances for RJ = 4n’+50 < Rs < 4R:. At approximately Rz = 405, a periodic 

convection occurs and persists up to R: = 440, at which a multipeaked periodic solution is found. 

1. INTRODUCTION 

THE DOUBLE-DIFFUSIVE fingering convection is found 
to be important in the vertical transport of the salt in 
the ocean [ 11. While in the porous medium, although 
not yet observed in nature, the vertical contaminant 
transport in groundwater due to buoyancy-driven 
motions may play a significant role in many situations. 
In the directional solidification of a binary alloy when 
cooling from below, for another example, there is a 
dendritic region separating the melt from the pure 
solid region [2]. In the dendritic region, which used 
to be recognized as a porous mushy zone, there are 
gradients of temperature and concentration existing 
simultaneously ; which may be conducive to the occur- 
rence of the fingering convection [3]. 

The double-diffusive convection, according to its 
dynamic characteristics, can be categorized into 
‘fingering’ and ‘diffusive’ configurations. To make 
doubly-diffusive convection possible, the fluid must 
contain at least two components with different mol- 
ecular diffusivities. In the fingering convection 
regime, the faster diffusing component is stabilizing 
and the slower diffusing component destabilizing to 
the vertical density gradient ; and vice versa for diffus- 
ive convection. 

A nonlinear treatment of double-diffusive fingering 
convection in a fluid layer was first presented by Straus 
[4]. He found that only small-scale motions are stable 

and the wavelength of the preferred mode compares 
favorably with the wavelength that maximizes the salt 
flux. Piacsek and Toomre [5] studied the finite ampli- 
tude growth of salt fingers across the interface in a 
two-layer fluid (warm saline over cold fresh water). 
Their study emphasized evolving shapes of the fingers, 
their collective growth behavior, and the associated 
vertical fluxes of heat and salt. They found that the 
fingers terminate as they penetrate into the quiescent 
fluid region and their shapes become bulbous. Because 
of the dynamic feature of the flow instability, the 
double-diffusive problem with saltier and warmer 
fluid below (diffusive convection) has attracted rela- 
tively much more attention than fingering convection 
has in the last decade. For example, Huppert and 
Moore [6] employed perturbation analysis and direct 
numerical simulation of the governing equations to 
trace out the possible forms of large-amplitude 
motion as a function of the Rayleigh number, Prandtl 
number, and Lewis number. They found two branches 
of time-dependent asymptotic solutions, which bifur- 
cate from the motionless conduction solution. One 
is an oscillatory branch emanating from the linear 
oscillatory mode. The other branch is the one of 
steady solutions, and emanates from the linear mon- 
otonic mode. Knobloch et al. [7’j uncovered a range 
of temporal chaos in which sequences of period-doub- 
ling bifurcations follow the periodic oscillations found 
by Huppert and Moore. Murray [8], in his disser- 
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NOMENCLATURE 

B form drag constant, equation (8) M’ vertical velocity 
C coefficient of Adams-Bashforth scheme W vertical velocity in Fourier 

CP specific heat of fluid decomposition. 
d diameter of glass beads which constitute 

the porous medium Greek symbols 
D differential operator, d/dz 

; 
nondimensional wavenumber 

Da Darcy number, K/h* solute expansion coefficient, equation 
F nonlinear functional, equations (25)-(28) (5) 
9 gravitational acceleration constant Y thermal expansion coefficient, equation 
G (P,qlnl(Prc,)r (5) 
h depth of the porous medium k’r thermal diffusivity of fluid 
k unit vector in z-direction Kg thermal diffusivity of glass bead 
I convolution product, equations (29) and tis solute diffusivity of species in porous 

(30) medium 
K permeability, equation (6) K’r thermal diffusivity of porous medium 
Le Lewis number, ~~/ti~ IJ dynamic viscosity 
NU Nusselt number, equation (32) V kinematic viscosity 
P pressure P density of fluid 
Pr Prandtl number, V/K~ 4 porosity. 
Q coefficient of Fourier decomposition of 

14 Subscripts 
RT thermal Rayleigh number, h lower boundary 

gy(T, - T,)hK/(vK,) k index of Fourier decomposition 
RS solute Rayleigh number, 1 upper boundary 

sP(& - WWvKs) reference property 
S salinity I, basic state. 
SC Schmidt number, v/~s 
Sh Sherwood number, dS,/dz at 2 = I Superscripts 
t time 1 first bifurcation from quiescent state to 
T temperature steady state 
u velocity vector, (u, iv) 2 second bifurcation from steady state to 
V horizontal velocity periodic state 
V horizontal velocity in Fourier 3 third bifurcation from periodic state to 

decomposition arbitrarily unsteady state. 

tation, investigated double-diffusive convection in a 
horizontal porous layer bounded by two rigid planar 
boundaries at the top and bottom, by both exper- 
imental and numerical approaches. He found that 
the oscillatory motion predicted by linear theory was 
unstable at finite amplitude. The breakdown of the 
initial oscillatory motion is followed by a large 
increase in the heat transport, as observed in his exper- 
iments (see also Murray and Chen [9]). 

In the experimental works, Griffiths [IO] performed 
a double-diffusive convection in a porous medium by 
using both a Hele-Shaw cell and a sand tank model 
to study the diffusive configuration. His results were 
suitable to explain some of the characteristics of the 
geothermal system in Wairakei. Taylor and Veronis 
[l l] used a Hele-Shaw cell to study double-diffusive 
fingering. They found that the horizontal scale of the 
fingers is small in comparison to the plate spacing, 
and the convection cell breaks down as a mode1 for 
groundwater fingers. An experimental investigation 
of fingering growth in two fluid layers of different 

densities saturating a porous medium was carried out 
by Imhoff and Green [12]. In their observations, they 
found that double-diffusive fingering convection can 
form in a saturated porous medium. By measuring the 
solute flux, they concluded that the fingering transport 
rate can be two orders of magnitude larger than that 
associated with the molecular diffusion in a motionless 
fluid. The width of the finger grew from about 0.3 cm 
at the sharp interface when the fingers were short to 
about 1.0 cm near the bottom when the fingers were 
long. . 

In this paper, we consider the double-diffusive 
fingering convection in a horizontal porous layer. The 
flow is assumed to be two-dimensional and periodic 
in the horizontal direction. The Darcy equation 
including Brinkman and Forchheimer terms is used 
for the momentum equation. To solve the equations 
and corresponding initial and boundary conditions, a 
Galerkin method is applied in the horizontal direc- 
tion, and a hybrid finite difference method is used in 
the vertical direction. The hybrid method performs 
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time-differencing using the implicit scheme of Crank- 
Nicolson for the diffusion terms and the explicit 
Adams-Bashforth scheme for the nonlinear terms. 
This numerical algorithm is of second-order accurate 
in both time and space. 

The developed computer code is first verified by the 
results of thermal convection case obtained by Com- 
barnous and Bories [ 131, Georgiadis and Catton [ 141, 
and Chen and Chen [3]. Then the algorithm is applied 
to the salt-finger case. Lacking information about 
finite amplitude motion of fingering convection in a 
porous medium, we proceed with a series of com- 
putations by considering several selected thermal Ray- 
leigh numbers within I < R, < 50, and increasing R, 
stepwise to supercritical values. 

2. GOVERNING EQUATIONS 

We consider a horizontal porous layer of thickness 
h bounded with rigid boundaries at top and bottom. 
On the top boundary, the temperature and salinity 
are maintained constant and higher than those on the 
bottom. A Cartesian coordinate system is chosen with 
the origin at the bottom and the z-axis vertically 
upward. The continuity, momentum, energy, and 
solute equations are, respectively, 

v-u = 0 (1) 

[ 

Id” B 
Pr ~~+KIuIu 1 =-VP+ 

-aAl --Y(T--T,)+P(S-s,)Ik+cIV’~ (2) 

G;+“-VT= K,V'T (3) 

4 g +U’vs = Ksv2s, (4) 

where p, denotes the density of the fluid at reference 
temperature T,, which is chosen to be Th, the tem- 
perature of the top boundary. In above equations, the 
Boussinesq approximation has been applied and y  and 
p are defined as 

and the coefficient G in (3) is the ratio of porous 
medium heat capacity to fluid heat capacity (p,C,),/ 
(p,C,),-. The use of Brinkman terms, as discussed 
by Nield [15], is important when the porosity is 
large. For a porous medium in which the solid phase 
consists of glass beads, K is obtained from the 
Kozeny-Carmen relation [ 131, 

(6) 

in which d is the diameter of the glass beads which 
constitute the porous medium. The thermal diffusivity 
of the porous medium, K~. is calculated from [13] 

KT = '$tir+(l-f#J)Kg. (7) 

where K~ is the thermal diffusivity of the glass, which 
is defined as the thermal conductivity of the glass 
divided by the specific heat capacity of the fluid. The 
solute diffusivity xs can be chosen to be 4.06 x 10m6 
cm2 s- ’ (note that it is not necessary to explicitly use 
this dimensional value in subsequent computations), 
which is relevant to a porous medium consisting of 3 
mm diameter glass beads immersed into a low con- 
centration solution [9]. 

It has been realized that the inclusion of inertial 
effects by adding u-Vu cannot be correct. Beck [16] 
pointed out that this term vanishes identically if the 
flow is unidirectional and hence cannot represent the 
known effect (increase in drag) in that case. For many 
naturally occurring porous media, Nield and Joseph 
[l7] showed that ]u]u is the appropriate inertia term 
in the momentum equation. This is a modification of 
an equation associated with the names of Dupuit and 
Forchheimer. The effect of inertia is a drag term in 
the momentum equation. The form drag constant B 
is independent of the viscosity and the other properties 
of the fluid but is dependent on the geometry of the 
medium. It can be expressed as [ 141 

(8) 

Experimental support for this form of the quadratic 
drag is described by Ward [ 181, while the many exper- 
imental results summarized by MacDonald et al. [ 191 
are consistent with this form. 

The boundary conditions at the top and bottom 
boundaries are non-slip, constant temperatures and 
salinities : 

u = 0, T= T,,, S = S, at I = h, (9) 

u = 0, T=T,, S=S, at z=O. (10) 

To render the equations nondimensional, the depth 
of the layer h is chosen as the characteristic length, 
/I'/K, as time, Pr v’/k’ as pressure, v//r as velocity, 
(T,,- T,)v/K~ as temperature, and (&S,)V/K~ as 
salinity, where v  is kinematic viscosity. After non- 
dimensionalizing and using the same notation for 
nondimensional quantities, the governing equations 
become 

v-u=0 (11) 

1 au hB 
4 Pr at + F tutu = -VP+ hl 

4 

-&u+;(R,T-R,S)k (12) 
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The nondimensional boundary conditions are 

u = 0, T=kr, s=&, at z=l, (15) 

u = 0, T=O, S=O, at z=O. (16) 

The important dimensionless parameters are the 
thermal Rayleigh number R, = gy(T, - T,)/zK/vK~, 

solute Rayleigh number Rs = gp(& - ~,)hK/vfc,, 

Prandtl number Pr = v/K~, Lewis number Le = 
tiS/~T, Schmidt number SC = V/KS, and Darcy number 
Da = K/k2. Since equations (1 I)-( 16) constitute 
an initial boundary value problem, an initial con- 
dition is needed. The computations are started from 
the quiescent basic state with linear vertical dis- 
tributions of temperature and salinity plus a small 
vertically-sinusoidal perturbation in salinity of 
maximum amplitude 10-4/Sc. 

3. NUMERICAL METHOD 

The finite difference method and spectral method 
are two powerful methods to solve systems of partial 
differential equations (PDEs) arising from con- 
vection-diffusion problems. The latter is especially 
widely used in natural convection problems because 
relatively few degrees of freedom are needed to simu- 
late a smooth function. In that case, both the compu- 
tational storage and execution time could be reduced 
considerably. On the other hand, the advantage of a 
finite difference method is that the formulation for 
most kinds of boundary conditions is easy and banded 
rather than full matrices are obtained. 

In this paper a mixed finite difference and Galerkin 
method is used to study the doubly-diffusive fingering 
convection in a 2-D horizontal porous layer. This 
method combining the advantages of both finite 
difference and Galerkin methods was first developed 
by Rogers and Beard [20] for axisymmetric Taylor- 
Couette flow. Later Meyer-Spache and Keller [21] 
successfully applied this method to detect the first 
branch of Taylor vortex solution bifurcating from 
Couette flow for both a wide and a narrow gap. 
McDonough [22] and Georgiadis and Catton [14] 
applied the same scheme to Rayleigh-Benard con- 
vection in a horizontal fluid layer and a porous layer, 
respectively. Recently, Buell[23] extended this scheme 
to obtain three-dimensional solutions of natural con- 
vection in a horizontal fluid layer. 

The basic idea of the ‘mixed’ method is to use the 
Galerkin method in the direction(s) where it is most 
convenient or efficient, and to use finite differencing 
in the other direction(s). Thus, the dependent vari- 

ables are expanded in Fourier series in the direction(s) 
in which the solution is periodic. A system of PDEs 
containing derivatives with respect to time and the 
remaining spatial coordinate(s) is obtained. To deal 
with the nonlinear terms in these PDEs, Meyer- 
Spache and Keller [21] used a full Newton’s method, 
while McDonough [22] performed a modal decoup- 
ling. Both methods require tedious iterations and in- 
itial guesses, or some ad hoc damping factors, whereas 
the modal decoupling significantly reduces arithmetic 
per iteration. To avoid these difficulties, we employ 
the Adams-Bashforth explicit scheme to deal with 
nonlinear terms and use the Crank-Nicolson scheme 
for the remaining terms. This hybrid implicit/ 
explicit method is computationally efficient because 
the nonlinear terms are handled explicitly and, thus, 
iteration is avoided. In addition, the severe time step 
restriction characteristic of the explicit method is 
relaxed by advancing the diffusion terms implicitly 
(Crank-Nicolson). 

The details of the mixed scheme applying to the 
current problem are described in the rest of this 
section. It is assumed that the flow exhibits a hori- 
zontal periodicity. Truncated Fourier series which are 
formed in the functional space spanned by an 
orthonormal basis are utilized to represent the solu- 
tion [14] : 

N 
dY, 2, f) = 0+ 1 Vk(z, I) sin upy 

k= I 
N 

lZ’(Jj, Z, 1) = o+ 1 wk(Z, t) COS f&y 
k= 1 

Iv 

T(y, z, t) = T,(z, f) + c T,(z, f) cm %y 
k= I 

N 
qy, z, t) = &(z, t) + c Sk(Z, 0 cos QY 

k= I 
N 

P(y, z, f) = P,(z, I) + 1 P/J& f) cos %Y 
k= I 

lul(y,z,O = Q&,0+ 2 Q&,OCOSQY, (17) 
k= I 

where C(~ = kcr with k = 1,2,3,. . . , N, and u is the 
nondimensional wavenumber found in the linear 
stability analysis [24] to be n. 

Rabinowitz [25] proved the existence of small 
amplitude steady solutions of the Rayleigh-Benard 
problem, which could be represented by the expan- 
sions in (17) with both S = 0 and Q = 0. McDonough 
[22] used equations (17) with S = Q = 0 to compute 
steady supercritical thermal convection. The expan- 
sion of (17) has also been used by Georgiadis and 
Catton [ 143 to compute steady supercritical convection 
in a porous layer. By numerous numerical tests, 
McDonough [22] and Buell [23] have studied the con- 
vergence rates and the absolute accuracy of the tech- 
nique. McDonough proved via computed results that 
the Fourier representation (17) converges uniformly 
and absolutely when the Rayleigh number is less than 
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the second critical value, which is about 11 times the 
first critical value [26]. He also showed that at medium 
Rayleigh number case the convergence appears to be 
nearly exponential. 

After eliminating the pressure in (12) by taking the 
curl, we substitute (17) into the resulting equations, 
take Galerkin inner products in the y-direction and 
obtain a system of PDEs : 

[ 

I a 
--+‘-1(D2-.:) (D’-c&W, 
C#J Pr at Da 4 1 

Bh 
= K F,.,,-F2.k (18) 

[ 

Gk-(D’-a,$ 1 T, = -PrF,, (1% 
[ 1 c:-W T,= -4 fD(w,~~) (20) 

I- 1 

[ 

$ $ -(D’-LY;) S, = -SC F.,k 1 (21) 

[& i -D’]S, = - ~j, D(W,S,). (22) 

The boundary conditions can be written as 

To=;, So=’ 
SC’ 

T,=S,= W,=DW,=O, 

at z=l, (23) 

T,=O, S,,=O, T,=S,= W,=DW,=O, 

at z = 0, (24) 

in which FnA, n = 1 to 4, are represented as follows : 

F,.k = -Q,(W;r-a;Wk)-Q;Ww; 

+ f 5 4z2(k, i,j) wiQj 
i= I j= I [ 

- z z,(k,i,j)(w:Q,+ w;Q;) (25) 
I 1 

F2elr = -$ [R,T, - R,S,] (26) 

Fsk= Tow,+: i 5Z,(i,jrk)WiTj 
i=I j-1 ai 

+Z2(k, i, j) WiTi 1 (27) 

F4k = & W, + i t 2 I, (i, j, k) WjSj 
i= I j= I ai 

+Z,(k, i, j) WJ; 1 . (28) 

Both D and ’ in the above equations denote z-deriva- 
tives. The convolution products I, and Z2 are 

I, (k, i, j) = g 
I 

n/Q 
sin a,. sin aiy cos ajy dy 

0 

= 

1 

0.5, j = Ik-iI 

-0.5, j= k+i (29) 

0, others 

Z,(k, i, j) = : 
s 

n/m 
cos a,y cos a,y cos ajy dr 

0 

0.5, j = Ik-iI 

= 

1 

0.5, j= k+i . (30) 

0, others 

The scalars of quadratic Forchheimer term, i.e. Ii], 
are evaluated first in the physical plane by the relation 
Iu( = (v2+kv2)“2 and then transformed to the spectral 
plane to evaluate Qk by using the discretized Fast 
Fourier Transform (FFT) at each time step. 

For solving nonlinear convection-diffusion equa- 
tions in one spatial dimension, Peyret and Taylor [27] 
suggested the Crank-Nicolson/Adams-Bashforth 
hybrid scheme when diffusion (viscosity or thermal 
diffusivity) is not too small. This hybrid implicit/ 
explicit method is computationally efficient because 
the nonlinear terms are handled explicitly and, thus, 
iteration is avoided. In addition, the severe time step 
restriction characteristic of the explicit method is 
relaxed by advancing the diffusion terms implicity. To 
illustrate the computation procedures more clearly, 
we choose (19) as a typical example to discretize as 
follows : 

T’!+‘-T” 

G Lt Ir 
-$[L;+‘Tk+L;Tk] 

= -Pr[c,F;,-c,F;;‘], (31) 

where Lz is the differential operator D’-a: at time 
step n. At t = 0, let C, = 1 and C2 = 0 so that the 
nonlinear terms are advanced initially by the forward 
Euler method. Thereafter, C, = 1.5 and C2 = 0.5 are 
used in the right-hand side of (31) until the end of the 
computation. The spatial derivatives in the z-direction 
are approximated by standard central differences. 
This scheme is second-order accurate in space and 
time. 

The initial conditions are quiescent basic state with 
linear vertical distributions of temperature and sal- 
inity and a sinusoidal salinity perturbation in the z- 
direction with maximum magnitude of 10e4/Sc. We 
also tried three other different types of small per- 
turbations for some cases of R, = 1. They are sinu- 
soidal perturbations with two and ten times the fixed 
initial wavenumber, and a random perturbation. The 
final steady states obtained for all four initial con- 
ditions are exactly the same, as characterized by the 
Nusselt number and the kinetic energy of the flow. 
Only the time to reach steady state depends on the 
initial conditions. For all subsequent calculations, the 
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sinusoidal perturbation with one complete wave- 
length is used. 

The usual von Neumann stability analysis is not 
applicable to the current study because of the inherent 
nonlinearity in the governing equations. A complete 
analysis of stability of the system represented by equa- 
tions (l)-(4) and their respective boundary conditions 
(9) and (IO) would be an enormous task. However, 
from a numerical determination of the stable region 
in the parameter space, Pruett [28] found for this 
hybrid scheme that as the finite difference grid is 
refined, smaller time steps are required. In this study, 
the number of grid points and the corresponding time 
steps used were essentially determined by trial and 
error. In general, for cases with higher R, and R,, 
finer grid and smaller time steps are needed. Con- 
vergence of the Fourier series deteriorates with higher 
R, and R,. A detailed discussion of the convergence 
of the mixed scheme can be found in McDonough 
P21. 

4. RESULTS AND DISCUSSION 

Since we make no attempt to pursue a parametric 
study with regard to Pr and Le in this study, Pr = 4.5 
and Le = 0.3, which is relevant to salt-sucrose solu- 
tion, are considered in all the computations of this 
paper. The Schmidt number can be obtained by 
SC = Pr/Le = 15. For the other parameters, we have 
4 = 0.389, Da = 0.89 x IO- ‘, d = 3 mm, h = 3 cm, 
and G = 0.69 corresponding to a porous medium con- 
sisting of 3 mm diameter glass beads saturated by 
water. 

4. I. Comparison with previous results 
Before we use the developed computer code to cal- 

culate the double-diffusive fingering convection in the 
porous medium, we apply it for verification to thermal 
convection cases which were done by both com- 
putational and experimental methods. It is known 
that the fluid remains stationary when the R, is below 
the first critical value - RT = 4x2 [29], where heat is 
transferred by conduction alone. Note that, according 
to the definition of R, in this paper, the value of RT 
is negative for thermal convection case, in which the 
porous layer is heated from below. Otherwise, for 
fingering convection case, both R, and Rs are positive. 
Above this value of -R,, steady convection prevails 
until a second critical value is reached when oscillatory 

motion first appears. Our computation yields a value 
for the first critical - RT between 39 and 40 and the 
second critical -R, between 390 and 400. Caltagirone 
[30] used a finite difference scheme for flow in a square 
cell and found that the value of the second critical 
- RT is 384f 5 ; whereas the value reported by both 
Schubert and Straus [31] and Kimura et al. [32] 
is between 380 and 400 and more precisely 390.7 
by Steen and Aidun [33]. Our computation for 
-R, = 480 shows that the Nusselt number oscillates 
with a period of 0.0069, which compares well with the 
value of 0.0073 obtained by Schubert and Straus [3 I] 
(using our time scale). The Nusselt number fluctuates 
between 5.54 and 5.92 in the current study and 
between 5.61 and 5.95 in the work of Schubert and 
Straus. The Nusselt number in this study is defined as 
Lw 

Nu=-F at z=l. 
Z 

Further checks of the computer code were made for 
the steady-state cases, i.e. - RT is smaller than 380. 
The results, as shown in Table 1, are in very good 
agreement with those of earlier investigations. Notice 
that in this study various numbers of terms of the 
Galerkin series are used for different R, cases. A 
detailed discussion of the influence of the number of 
terms can be found in Schubert and Straus [31]. It is 
known that as - RT is increased into the supercritical 
range, heat transfer is maximized with the cells of 
decreasing wavelength. We have computed the Nus- 
selt number over a range of wavenumbers from 2 to 
8 at R, = -200. These results are compared with 
those obtained by Combarnous and Bories [13] and 
by Georgiadis and Catton [14]. As shown in Fig. 
1, the agreement between our results and those of 
Georgiadis and Catton is quite good, and that our 
results are generally higher than those of Combarnous 
and Bories, but with a similar trend. 

4.2. Double-diffusive jngering convection in super- 
critical stage 

In the rest of this section, we consider the super- 
critical fingering convection in a porous medium. The 
horizontal porous layer is heated and salted from 
above in which the thermal gradient serves as a sta- 
bilizing factor and solute gradient as a destabilizing 
factor. In each of the following computations, a sta- 

Table I. Comparison of steady-state Nusselt numbers for various RT obtained in this 
study with the results obtained by previous studies 

-& 100 200 300 350 380 

Caltagirone [30] 2.651 3.813 4.523 - - 
Schubert and Straus [3 I] - - 4.79 4.94 
Combamous and Bories [ 131 2.6 3.8 4.4 - - 

Fig. 43 
Present study 2.62 3.84 4.59 4.89 5.03 
(No. of terms) (5) (5) (10) (15) (15) 
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:i ( , , , , , ( ,I 
10 2.0 3.0 4.0 5.0 8.0 7.0 a.0 8.0 10.0 

Wavenumber 

FIG. 1. Variation of the Nusselt number with wavenumber at 
-R, = 200 : - present results ; l Georgiadis and Catton 

[14]; 0 Combarnous and Bories [13]. 

bilizing thermal gradient R, and a destabilizing solute 
gradient Rs above the critical value are maintained. 
The value of R, ranges from slightly above the critical 
to highly supercritical. The Nusselt and Sherwood 
numbers are the major measures of the strength of 
convection, and streamline patterns, isotherms and 
isoconcentration contours are used to study the trans- 
port phenomena. The Sherwood number is a dimen- 
sionless measure of the salt flux and has the same 
definition as the Nusselt number of (32) except T,, is 
replaced by S,. 

As far as the authors are aware, there is no pub- 
lished literature that is devoted to the nonlinear 
fingering convection in the porous medium. Nield [24] 
determined the onset Rs theoretically for various 
boundary conditions. Straus [4] studied the finite 
amplitude fingering convection in a fluid layer and 
found that supercritical convective fingering is stable 
only when the wavelength is much smaller than that 
at the onset. Lacking further information about finite 
amplitude fingering convection in a porous medium, 
we pursue a computational study for R, ranging from 
near the onset to highly supercritical. Two different 
values of RT, 1 and 50, are considered in this section. 
For R, = 1, we expect the convective motion to be 
similar to that of thermal convection; and a totally 
different phenomenon is anticipated for the case of 
R, = 50, as discussed in Chen [34] for different geo- 
metrical configuration. 

We examine the critical Rs by looking at the tem- 
poral evolution of the kinetic energy to determine if 
the initial disturbance grows or decays. A vertical 
sinusoidal perturbation of solute with an amplitude 

of 10m4/Sc superimposed on a quiescent basic state 
with linear thermal and solutal gradients in the vertical 
direction is used as the initial condition. It turns out 
that the computed critical R, is 41 for R, = 1 and 90 
for RT = 50 compared with 40.5 and 89.5 of the linear 
stability analysis [24]. The agreement between non- 
linear computation and linear theory is very good. 

We then investigate the case of RT = 1 by extending 
R, from 1.5 to 11 times the critical. At a value of 
R, between 10 and 11 times the critical, oscillatory 
convective motion sets in. For each value of R,, exten- 
sive tests of convergence rate are conducted. The Nus- 
selt numbers are the major measures for the con- 
vergence rate. A result with an error of less than 2%, 
which is attributed to the truncated terms, is regarded 
as the convergent solution. The error is evaluated on 
the basis of the results obtained by using the highest 
number of terms. From the experience of thermal 
convection cases, we are aware that the convergence 
rate of the Galerkin series is second order for the 
cases which attain steady solution. Nevertheless, more 
terms are needed to simulate the flow at higher Ray- 
leigh numbers. For unsteady solutions, a much larger 
number of terms in the Galerkin series is necessary 
to obtain a convergent solution. This was also indi- 
cated by Schubert and Straus [31] as well as by Steen 
and Aidun [33]. 

Table 2 summarizes the results obtained for R, = 1 
with Rs varying from 1.5 to 10 times the critical. 
Different number of grid points and terms of Galerkin 
series are used to test the convergence of solution. It 
is found that, for Rs = 5Ri, the Nusselt and Sherwood 
numbers given by 5-term-50-point simulation are 
quite accurate compared with those from 12-term- 
50-point or 5-term-loo-point simulations. For Rs < 
5R& a smaller number of terms and grid points are 
needed to accurately simulate the solutions. In these 
cases, steady unicellular convection is obtained. When 
R, = IOR;, the results are more sensitive to the num- 
ber of terms retained in the Galerkin series. From 
Table 2, with the number of grid points fixed at 
50, one can see that oscillatory unicellular convection 
is obtained when only five terms are used. A steady 
state solution with tricellular convection is obtained 
using eight terms, and the Nusselt and Sherwood 
numbers differ considerably from the five-term results. 
When 12 terms are used, another oscillatory tricellular 
convection is again predicted. The convergent solu- 
tion is not found until the number of terms increases 
to 16 and 20. The Nusselt numbers are almost the 
same using 16 terms and 20 terms, and the cor- 
responding streamline patterns are essentially ident- 
ical. To examine the finite difference discretization 
convergent rate, we use a 16-term-80-point dis- 
cretization for Rs = 10 x Ri and find the Nusselt and 
Sherwood numbers differ by less than 1% from those 
obtained using a 16-term-50-point discretization. We 
summarize the steady-state convective patterns in 
terms of streamlines, isotherms and isoconcentration 
contours in Fig. 2 for RT = 1. 
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Table 2. Nusselt and Sherwood numbers for various Rs and RT = I with different number of terms 
used. (sl) : steady state with single cell ; (~3) : steady state with triple cell; (01) : oscillatory state with 

single cell ; (03) : oscillatory state with triple cell 

No. of terms 5 8 I2 I6 20 5 5 16 
No. of points 50 50 50 50 50 80 100 80 
&I& 

NU 1.096 1.096 - 
1.5 (sl) 61) 

Sh 1.746 1.746 - 
Nu 1.415 I.415 

3.0 61) 61) 
Sh 2.946 2.946 - 

NU I .809 1.802 1.797 
5.0 (sl) @I) 61) 

Sh 3.870 3.837 3.821 
NU 2.900 1.935 2.100 

10.0 (01) (s3) (03) 
Sh 7.400 5.509 5.400 

1.092 - - 
(sl) 

- 1.740 - - 
- - 1.409 - 

61) 
- - 2.937 - - 

- - 1.803 I.801 - 
(sl) @I) 

- 3.834 3.822 

2.512 2.512 - - 2.510 
(sl) 61) @I) 

5.135 5.137 - - 5.131 

d 

FIG. 2. Steady-state streamline patterns (left), isotherms (middle) and isoconcentration contours (right) 
for RT = I with various R, : (a) RJR: = 1.5 ; (b) = 3 ; (c) = 5 ; (d) = IO. 
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b.30 0; Oi Oh 0:40 

lirrm 

FIG. 3. Time evolution of Nusselt and Sherwood numbers 
of&= I andR,/Rg = II. 

In the thermal convection case, - RT = 390.7 is the 
critical value for the onset of oscillatory motion ; the 
so-called secondary onset. For - RT larger than the 
secondary onset, the flow becomes oscillatory with 
constant period and amplitude. In the fingering con- 
vection case of R, = 1, we anticipate the secondary 
onset of Ri will lie close to that of thermal convection. 
Accordingly, we compute the case of Rs = 11 Rl and 
find that the convection turns out to be oscillatory. 
The period is 0.011 and the Nusselt number oscillates 
between 2.01 and 3.23, and Sherwood number 
between 5.04 and 5.72. As can be seen in Fig. 3, the 
oscillation is regular and stable. In this computation, 
30-term-50-point discretization is necessary to accu- 
rately simulate the oscillatory motion. A further com- 
putation using 30-term-80-point was conducted and 
resulted in a solution which differs from those of 30- 
term-50-point by less than 2% in the Nusselt and 
Sherwood numbers. 

Higher values of secondary onset Ri (between 405 
and 445.5) of the fingering convection than those of 
the thermal convection are not surprising because in 
fingering convection, the temperature gradient, vis- 
cous dissipation, and thermal conduction are all 
stabilizing, in contrast to the thermal convection case 
in which only viscous dissipation and thermal 
conduction are stabilizing. It is evident that the 
temperature gradient makes a significant contribution 
in stabilizing the flow. By observing the streamline 
patterns and corresponding isotherms and iso- 
concentration contours during an oscillatory period, 
as shown in Fig. 4, we find that the flow is unicellular 
and speeds up and slows down during the cycle, and 
the convection pattern changes very little during a 
cycle. 

The case of RT = 50 is examined next. We increase 
RS from 1.5 to 5 times the critical, at which value an 
oscillatory convection is found. Table 3 summarizes 
the results for RT = 50. Convergence testing was done 
by increasing the number of terms in the Galerkin 
series. The number of grid points of the finite differ- 
ence scheme is fixed at 50 since the experience gained 
in the RT = 1 case shows that use of 50 points gives a 
solution within a reasonable error, i.e. less than 2% in 

Nusselt and Sherwood numbers; also the flow pattern 
is not affected by the resolution of the vertical dis- 
cretization. 

For R, = l.5Rs!, five terms are enough to obtain a 
convergent solution, in which steady unicellular con- 
vection occurs. Increasing R, to three times the criti- 
cal, a five-term horizontal discretization results in an 
oscillatory unicellular convection. After adding three 
more terms in the series, a unicellular steady state is 
found and the Nusselt and Sherwood numbers are 
found to be in good agreement with those obtained 
using 12 terms. The number of terms again becomes 
more important for higher Rayleigh number. For 
RS = 4Ri, a convergent solution is not available until 
12 terms are used. The differences in Nusselt and 
Sherwood numbers between those obtained by 12 and 
16 terms are negligible. Steady unicellular convection 
is found in this case. The streamline patterns and the 
corresponding isotherms and isoconcentration con- 
tours are shown in Fig. 5. 

An oscillatory phenomenon is observed when R, 
increases to five times the critical value. Twenty-five 
terms are necessary to simulate the oscillatory finger- 
ing convective flow in this case. A comparison (not 
shown) was made between the periods and amplitudes 
obtained using 30 terms and 25 terms to assure that 
the solution converged. Figure 6 illustrates the evol- 
ution of Nusselt and Sherwood numbers with time 
and shows that the oscillation is multipeaked periodic. 
The period is almost exactly twice that which occurs 
at RT = 1 and Rs = 11Rl. To gain physical insight 
during the oscillations, the streamlines, isotherms and 
isoconcentration contours between t = 0.42 and 
t = 0.44 are presented in Fig. 7. One can see that the 
core of the convection cell moves back and forth along 
the diagonal of the square and the convective flow 
pattern keeps a similar profile. 

4.3. Identification of stability boundaries 
In the last section, we found that the steady finger- 

ing convection becomes an unsteady motion in 
lO<R,/R$<ll for R,=l andin4cRs/RS<5 
for RT = 50. In order to more precisely identify the 
Rg, at which an unsteady convective flow bifurcates 
from the steady solution, we compute several cases 
with Rs > Rz for four selected RT = 1, 15,30, and 50. 
The value of Rz is determined by intersecting the 
curves of steady convection and unsteady convection 
(see Fig. 8). For RT = 1, for instance, we compute the 
Sherwood (also the Nusselt) number of four cases of 
R,/Rd = 1.5, 3, 5, and 10 for steady convection. TO- 
gether with the onset point at Rs = RA, a smooth 
curve of Sherwood number versus Rs consisting of 
five points is made. We also compute the Sherwood 
number for R,/Ri = 11, 12, and 13, in which the 
convective motion is periodic. The mean value of 
Sherwood number in a period is taken for determining 
a point of the curve of periodic convection. The curve 
connecting these three points has a different slope to 
that of steady convection. By extending both curves 
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FIG. 4. Streamline patterns (left), isotherms (middle) and isoconcentration contours (right) corresponding 
to times indicated in Fig. 3: (a) I = 0.313; (b) I = 0.315; (c) I = 0.317; (d) I = 0.319; (e) I =0.32X 

with dashed curves and seeking the intersection point, 
the Rz is thus approximately determined to be 440. 
Using the same method of intersecting the extending 
curves, the R,' and R:, at which the convection bifur- 
cates from periodic to unsteady (or multipeaked- 
periodic), for R, = 50 are approximately determined 
to be 405 and 440, respectively. The curve of steady 
convection consists of four points at RJR: = 1, 1.3, 
3, and 4 and that of periodic convection is composed 
of three points at R, = 410, 420, and 430. For the 
curve of unsteady convection, we consider three cases 
of RJR; = 5,6, and 7, in which unsteady convection 
prevails. We use a vertical bar to represent the range 
of fluctuation of Sherwood number for each case. The 
curve of unsteady convection is made by connecting 
the central points of these three bars. 

For R, = 15 and 30, the values of Ri and Rz are 
determined by the same method. With these computed 

critical Rayleigh numbers, the boundaries between 
different types of convective motion can be identified 
(Fig. 9). Figure 9 illustrates four different regions : a 
quiescent region where the fluid is motionless, a steady 
convection region where the convective motion is 
steady, a periodic convection region where the con- 
vective motion changes periodically, and an unsteady 
convection regipn where the convection either is muhi- 
peaked-periodic when R, is close to Ri or is arbitrarily 
unsteady, in which the Nusselt or Sherwood number 
fluctuates in a finite range, when Rs is much larger 
than Ri. The boundary between quiescent and steady 
convection region is determined by the relation [24] 

R, = R,+4z2. (33) 

The boundary dividing regions of steady and periodic 
convection is represented by the curve consisting of 
five points. The regions of unsteady and periodic con- 
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Table 3. Nusselt and Sherwood numbers for various Rs and RT = 50 with different 
number of terms used. (sl) : steady state with single cell: (~3) : steady state with 
triple cell ; (o I) : oscillatory state with single cell ; (03) : oscillatory state with triple 

Cdl 

No. of terms 5 8 12 16 20 25 
&I& 

NU 1.114 1.114 
1.5 61) (sl) 

Sh 1.862 1.861 

NU 1.500 1.532 
3.0 (01) 61) 

Sh 3.401 3.325 

NU 2.000 1.613 
4.0 (01) (s3) 

Sh 5.000 4.640 

Nu - 1.700 
5.0 (03) 

Sh - 4.700 

1.527 - - 
k-l) 

3.319 - - 
1.808 1.807 - - 
(sl) (sl) 

3.944 3.942 - - 

1.951 2.200 2.300 - 
(s3) (01) (01) 

5.859 5.100 5.200 - 

vection are separated by the curve consisting of three with some errors, which generally lie within f20 of 
calculated points and one point of Rr = 0, the thermal Rs. 
convection case. This was determined by Kimura et The value of Rz for RT = 1 cannot be obtained by 
al. [35] to be the point at which the thermal convection the current scheme because of the large number of 
changes from periodic motion to an unsteady chaotic terms of Galerkin series needed as well as the severe 
state in the range 850 c - RT < 1000, and 950 is limit of time step. We tabulate in Table 4 the periods 
chosen in Fig. 9. In fact, the boundaries are estimated corresponding to the onset of periodic motion at Ri 

FIG. 5. Steady-state streamline patterns (left), isotherms (middle) and isoconcentration contours (right) 
for RT = 50 with various R, : (a) Rs/Ri = 1.5 ; (b) = 3 ; (c) = 4. 
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FIG. 6. Time evolution of Nusselt and Sherwood numbers 
of RT = 50 and R,/Ri = 5. 

for various R, considered. As one can see, the period 
decreases with increasing Rz, but not much. For 

R,. = 50, the period of R, = 430 is about the same 
with that of RT = 1 and R, = 445.5. As R, increases 
to 452.5 for R, = 50, the convective motion becomes 
multipeaked-periodic with a period being about twice 
of that of Rs = 430. Note that for 15 < R, Q 50, the 
periodic motion is of single period. For R, close to 
zero, according to Kimura et al. [35], the periodic 
motion may be of single or double period. For 
unsteady convection, the fluid motion is either 
multipeaked-periodic or arbitrarily unsteady. 

4.4. Comments on the numerical scheme 
A few comments on the mixed finite difference- 

Galerkin scheme used here are made in the following. 
From Tables 2 and 3 one can find that the Fourier 

FIG. 7. Streamline patterns (left), isotherms (middle) and isoconcentration contours (right) corresponding 
to times indicated in Fig. 6 : (a) t = 0.421; (b) I = 0.427 ; (c) I = 0.432 ; (d) I = 0.437; (e) t = 0.441. 
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RS 

FIG. 8. Sherwood numbers for various R, and RT = I and 
50 at different state of convective flow. 

series converges faster than the series CT=, (l/N’), 
where N is the number of terms of Galerkin series, 
when the solution is steady. As Rs increases beyond 
Ri, according to the discussion of McDonough [22] 
and of this study, the convergent rate becomes much 
slower. We tabulate the corresponding computational 
data for the computation done in Section 4.3 in Table 
4, from which one can see the number of terms of 

unsteady convection 

0.0 10.0 20.0 30.0 40.0 60.0 

RT 

FIG. 9. Stability boundaries dividing regions of different 
convective flow. 

Table 4. Periods and corresponding computational data used 
for each case of various RT and Rs 

RT Rs No. of terms Time step Period 

1 

15 

30 

50 

445.5 30 
486.5 30 
526.5 35 
530 30 
550 35 
600 35 
700 45 

480 25 
500 25 
600 35 
410 25 
420 25 
430 25 
452.5 25 
543 40 
633.5 40 

0.0001 
0.0001 
0.00005 
0.0001 
0.00005 
0.00002 
0.00001 
0.0001 
0.0001 
0.00002 
0.0001 
0.0001 
0.0001 
0.0001 
0.00001 
0.0000 I 

0.011 
0.0084 
0.0071 

0.0098 
0.009 1 
0.0074 

- 

0.011 
0.010 

0.013 
0.013 
0.011 

- 

Galerkin series is dramatically larger than that needed 
for a steady state. We also show in Fig. 10 the CRAY 
XMP/48 CPU time required for every thousand time 
steps when the number of grid points and terms 
increase. The case we use to examine CPU time is 
RT = 1 and Rs = l.SRi. It is found that the CPU time 
increases exponentially with the number of terms 
while increasing linearly with the number of grid 
points. The results shown in Sections 4.1 and 4.2 were 
obtained by using the CRAY XMP/48 at University 
of California at San Diego. The results of Section 
4.3 were obtained by using Convex C-l at National 
Taiwan University, whose computational speed is 
much slower than that of CRAY XMP/48. To run a 
case using 40 terms and 50 points for 1000 time steps, 
for example, with the time sharing system setup in the 
operational system of Convex C-l, three days are 
necessary to run through a case. Usually, for obtaining 
an unsteady solution, more than 2000 time steps are 
required. In conclusion, the current scheme is quite 
efficient for the steady state while is relatively time- 
consuming if the solution is unsteady. 

5. SUMMARY 

We have considered nonlinear two-dimensional 
double-diffusive fingering convection in a horizontal 
porous medium in which a horizontally-periodic con- 
dition is prescribed. A mixed Galerkin-finite differ- 
ence method is developed to numerically solve the 
initial boundary value problem, which is governed by 
Darcy’s law, including Brinkman and Forchheimer 
terms to account for viscous and inertia effects, respec- 
tively, and the associated energy and mass transfer 
equations. The developed computer code was first 
used to compute the thermal convection case and the 
results were in good agreement with existing results. 
In the fingering convection case, we considered four 
selected values of RT = 1, 15, 30, and 50. For each 
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FIG. 10. CPU time required for various numbers of terms of Galerkin series and grid points of finite 
difference discretization. 

case of R,, three kinds of critical Rs are determined; 
they are Rl the critical value for the onset of steady 
fingering convection, Ri for the transition from 
steady convection to periodic convection, and Ri for 
the transition from periodic convection to unsteady 
convection. With these critical Rs and corresponding 
RT, the stability boundaries dividing the regions of 
different kinds of fluid motion are identified in a 
RT-Rs plane. The mixed Galerkin-finite difference 
scheme used in this study is found to be quite efficient 
when the convective motion is steady while is rela- 
tively time consuming for unsteady or periodic con- 
vection since a large number of terms in the 
Galerkin series is required to reach a convergent solu- 
tion. 
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